Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study.

نویسندگان

  • Weiwei Xue
  • Panpan Wang
  • Bo Li
  • Yinghong Li
  • Xiaofei Xu
  • Fengyuan Yang
  • Xiaojun Yao
  • Yu Zong Chen
  • Feng Xu
  • Feng Zhu
چکیده

Antidepressants selectively inhibiting serotonin reuptake (SSRIs) represent a highly effective drug class, and novel therapeutic strategies were proposed to improve SSRIs' drug efficacy. The knowledge of the inhibitory mechanism of FDA approved SSRIs could provide great insights and act as important starting points to discover privileged drug scaffolds with improved efficacy. However, the structure of human serotonin transporter (hSERT) is yet to be determined and the inhibitory mechanism underlying SSRIs still needs to be further explored. In this study, the inhibitory mechanism of 4 approved SSRIs treating major depression (fluoxetine, sertraline, paroxetine and escitalopram) was identified by integrating multiple computational methods. Firstly, a recently published template with high sequence identity was adopted for the first time to generate hSERT's homology model. Then, docking poses of 4 SSRIs were used as the initial conformation for molecular dynamics (MD) simulation followed by MM/GBSA binding free energy calculation and per-residue free energy decomposition. Finally, the binding mode shared by the 4 studied SSRIs was identified by hierarchically clustering per-residue free energies. The identified binding mode was composed of collective interactions between 3 chemical groups in SSRIs and 11 hot spot residues in hSERT. 6 out of these 11 were validated by previous mutagenesis studies or pharmacophore models, and the remaining 5 (Ala169, Ala173, Thr439, Gly442 and Leu443) found in this work were not yet been identified as common determinants of all the 4 studied SSRIs in binding hSERT. Moreover, changes in SSRIs' binding induced by mutation on hot spot residues were further explored, and 3 mechanisms underlining their drug sensitivity were summarized. In summary, the identified binding mode provided important insights into the inhibitory mechanism of approved SSRIs treating major depression, which could be further utilized as a framework for assessing and discovering novel lead scaffolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myoclonus as a Single Side Effect of Combination of Selective Serotonin Reuptake Inhibitors (SSRIs) and Clomipramine: Three Case Reports

   Selective Serotonin Reuptake Inhibitors (SSRIs) are the most popular psychiatric medications that are approved for several neuropsychiatric conditions such as depression and obsessive-compulsive disorder (OCD). On the other hand, clomipramine is a tricyclic anti-depressant which is the only approved medication, among this class, to treat OCD due to its substantial effects on serotonergic sys...

متن کامل

Effect of Donepezil on Cognitive Disorders Due to the Selective Serotonin Reuptake Inhibitors in the Patients with Major Depressive Disorder

Introduction: Many factors cause cognitive impairment, including medication, such as selective serotonine reuptake inhibitor drugs use. On the other hand, many drugs are used in cognitive impairment therapy, including donepezil, which act by inhibiting the cholinesterase enzyme and increase brain acetylcholine. Methods: This study was a double-blind controlled randomized controlled clinical tr...

متن کامل

Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study

Selective norepinephrine reuptake inhibitors (sNRIs) provide an effective class of approved antipsychotics, whose inhibitory mechanism could facilitate the discovery of privileged scaffolds with enhanced drug efficacy. However, the crystal structure of human norepinephrine transporter (hNET) has not been determined yet and the inhibitory mechanism of sNRIs remains elusive. In this work, multipl...

متن کامل

Synthesis novel bis-Coumarin derivatives as potential acetylcholinestrase inhibitors: An in vitro, molecular docking, and molecular dynamics simulations study

Alzheimer's disease is an irreversible and progressive brain disorder that slowly destroys memory and thinking skills and ultimately the ability to do the simplest things and can lead to death. Cholinesterases (ChEs) play an important role in controlling cholinergic transmission, and subsequently, by inhibiting CHEs, acetylcholine levels in the brain are elevated. Coumarins have been shown to e...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2016